The Diameter of the Rubik's Cube Group Is Twenty
نویسندگان
چکیده
We give an expository account of our computational proof that every position of Rubik’s Cube can be solved in 20 moves or less, where a move is defined as any twist of any face. The roughly 4.3 × 1019 positions are partitioned into about two billion cosets of a specially chosen subgroup, and the count of cosets required to be treated is reduced by considering symmetry. The reduced space is searched with a program capable of solving one billion positions per second, using about one billion seconds of CPU time donated by Google. As a byproduct of determining that the diameter is 20, we also find the exact count of cube positions at distance 15.
منابع مشابه
Group Theory and the Rubik’s Cube
A Note to the Reader These notes are based on a 2-week course that I taught for high school students at the Texas State Honors Summer Math Camp. All of the students in my class had taken elementary number theory at the camp, so I have assumed in these notes that readers are familiar with the integers mod n as well as the units mod n. Because one goal of this class was a complete understanding o...
متن کاملTwenty-Five Moves Suffice for Rubik's Cube
How many moves does it take to solve Rubik’s Cube? Positions are known that require 20 moves, and it has already been shown that there are no positions that require 27 or more moves; this is a surprisingly large gap. This paper describes a program that is able to find solutions of length 20 or less at a rate of more than 16 million positions a second. We use this program, along with some new id...
متن کاملAlgorithms for Solving Rubik's Cubes
The Rubik’s Cube is perhaps the world’s most famous and iconic puzzle, well-known to have a rich underlying mathematical structure (group theory). In this paper, we show that the Rubik’s Cube also has a rich underlying algorithmic structure. Specifically, we show that the n×n×n Rubik’s Cube, as well as the n×n×1 variant, has a “God’s Number” (diameter of the configuration space) of Θ(n/ logn). ...
متن کاملZero Knowledge with Rubik's Cubes
Since the invention of the Rubik’s cube by Ernö Rubik in 1974, similar puzzles have been produced, with various number of faces or stickers. We can use these toys to define several problems in computer science, such as go from one state of the puzzle to another one. In this paper, we will classify some of these problems based on the classic Rubik’s cube or on generalized Rubik’s Cube. And we wi...
متن کاملApplications of Cayley Graphs
This paper demonstrates the power of the Cayley graph approach to solve specific applications , such as rearrangement problems and the design of interconnection networks for parallel CPU's. Recent results of the authors for efficient use of Cayley graphs are used here in exploratory analysis to extend recent results of Babai et al. on a family of trivalent Cayley graphs associated with P SL 2 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 56 شماره
صفحات -
تاریخ انتشار 2013